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Abstract—Asymptotic, plane strain near-tip fields are presented for steadily propagating interface
cracks between (1) a ductile solid and a rigid substrate, and (2) two dissimilar ductile solids. The
ductile materials are taken to be incompressible, elastic—-perfectly plastic and obey the J,-flow theory
of plasticity. It is shown that the crack-tip region can be considered as being composed of two types
of angular plastic sectors : Uniform sectors, in which stresses are constant, and nonuniform sectors.
Solutions for the asymptotic crack-tip fields are not unique, and they are represented by various
assemblies of the plastic sectors that satisfy the necessary conditions. Some of the solutions are
isolated, while others belong to one-parameter families. The crack-tip fields represented by these
asymptotic solutions are fully continuous in each of the two component solids, and have nonsingular
strains at the crack tip.

INTRODUCTION

The asymptotic structure of the elastic—plastic crack-tip fields around an interfacial crack
in a dissimilar bimaterial has been the focus of many recent investigations. For stationary
interface cracks, such investigations were led by finite element studies of cracks in power-
law hardening materials under small-scale yielding conditions (Shih and Asaro, 1988, 1989},
revealing distinct as well as similar features when compared to mixed-mode crack-tip fields
in homogeneous materials, which prompted several investigators to conduct further research
on this subject using analytical means (Guo and Keer, 1990a; Gao and Lou, 1990 ; Wang,
1990 ; Champion and Atkinson, 1990, 1991). In the case of interface cracks in elastic—
perfectly plastic materials, analytic asymptotic solutions were obtained by Guo and Keer
(1990b) and Deng (1992), and numerical small-scale yielding solutions by Zywicz and Parks
(1992). For cracks with frictionless crack-surface contact, analyses have been performed
by Zywicz and Parks (1990), Aravas and Sharma (1991), and Sharma and Aravas (1991).

In the area of interfacial crack growth, the investigation of asymptotic structures of
the near-tip elastic—plastic fields was pioneered by Guo and Keer (1990b), who obtained
an asymptotic field solution for a plane strain crack growing steadily and quasi-statically
along an interface between an elastic—perfectly plastic solid and a rigid substrate. This and
similar problems were later investigated independently by several other authors. Ponte
Castaneda and Mataga (1991) treated the same problem and found two asymptotic near-
tip field solutions, one of which coincides with that of Guo and Keer. Ponte Castaneda and
Mataga further obtained steady-state, asymptotic and variable-separable solutions for
quasi-statically growing cracks along ductile/brittle interfaces under both plane strain and
anti-plane strain conditions, where the ductile solid is elastic—plastic with linear hardening
and the brittle solid is linearly elastic. Drugan (1991) studied the problem of steady, quasi-
static crack growth along the interface between an elastic—perfectly plastic solid and a rigid
substrate under plane strain as well as anti-plane strain conditions. By admitting proper
velocity discontinuities, Drugan found two families of asymptotic near-tip solutions for the
plane strain case and one family for the anti-plane strain case. It is noted that the plane
strain solutions for the ideally-plastic/rigid interface by Guo and Keer, and Ponte Castaneda
and Mataga are contained in Drugan’s families of solutions.

The study reported in this paper extends the above elastic-plastic analyses of quasi-
static, interfacial crack growth to the dynamic case, which takes into consideration
the effects of inertia on the crack-tip fields. Besides its theoretical relevance, this problem also
has practical bearings, in that crack growth along an inherently weak bond between two
dissimilar materials will probably be trapped in the interface, and under certain conditions
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may become unstable and start to propagate rapidly along the interface. Since this is a first-
order asymptotic analysis, the condition of steady-state crack growth is assumed, as is done
in previous studies for the case of quasi-static crack growth. The two component materials
are treated as either rigid or elastic—plastic (ductile), which, in the latter case, are elastic—
perfectly plastic, incompressible, and obey the J,-flow theory of plasticity. In the following,
a concise formulation of the mathematical problem will be presented first, with solutions
for each crack-tip sector given explicitly. Then the sectors will be assembled for both
ductile/rigid and ductile/ductile interfaces, and several one-parameter families of solutions,
as well as some isolated ones, of the crack-tip fields will be obtained. Finally we will study
the solutions, discuss their features and summarize the main findings of this study.

FORMULATION

As shown in Fig. 1, we consider a straight crack growing steadily yet dynamically
along the interface between two dissimilar materials, where the (moving) coordinate system
is originated at the crack tip, with x, and x, as indicated, and x, normal to the plane
pointing outwards, and r and 6 are the associated polar coordinates. The upper material is
elastic—plastic (ductile) and the lower one is either rigid (nondeformable) or ductile. (We
note that when a ductile material is in a purely elastic state, it is equivalent to an elastic
material.) The governing equations given below will be for a generic ductile solid, and can
apply to either of the two component materials in question.

Now let g;; be the rectangular Cartesian components of the stress tensor, and similarly,
¢; the components of the strain tensor, and v; the components of the velocity vector, where
Latin indices have the range 1, 2 and 3, and later, Greek indices will have the range 1 and
2. If we note that the steady-state condition requires that the crack speed v be a constant
and that (") = —v( ), where a superimposed dot denotes a material time derivative and
a comma implies spatial derivatives with respect to coordinate components following it,
the equation of motion, with inertia included, can be written as

Oupp = —PVVy. m

The relation between the components of the (small) strain-rate tensor and the velocity
vector is

Eap = (Vap+pa)/2. 2

The constitutive law for the generic incompressible elastic—perfectly plastic material is given
by

éaﬂ = (1/2u)juﬂ+lsaﬁ5 (3)

where u is the elastic shear modulus. The flow factor 4 is non-negative in a plastic state and
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Fig. 1. A straight crack propagating dynamically along a bimaterial interface.
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identically zero in an elastic state, and s; = 6;,—09;; is the component of the deviatoric
stress tensor, where o = d,/3 (the summation convention associated with indicial notations
is adopted here) is the mean or hydrostatic stress and §;; is the Kronecker delta. Due to the
plane strain requirement v; = €3, = 33 = 0 and the incompressibility of the material, we
find that

Vag =0, 0=0,/2=03;, 511 =—53=(011—02)/2, $3;=0, C))
from which the von Mises yield condition can be simply written as
shitsiy =k )

where constant k is the material’s yield stress in pure shear.

To complete the mathematical formulation of the problem, we note that the above
governing equations are supplemented by traction and velocity continuity conditions across
the interface and the traction-free boundary conditions ¢,, = ¢,, = 0 along the crack
surfaces. When the lower material is considered rigid, the continuity conditions along the
interface become v, = v, = 0, while the tractions there are not restricted.

SOLUTIONS FOR INDIVIDUAL SECTORS

The asymptotic analysis in this section is mainly based on, but in part extended from,
previous studies of elastic—plastic crack growth in homogeneous materials by Gao and
Nemat-Nasser (1983), Lin (1985), Leighton ez al. (1987), and Deng and Rosakis (1991),
among others. To facilitate such an analysis, it is commonly implicitly assumed that
mathematical operations such as lim,_, { ), é( )/or, j ( ) dr, etc., are permitted as needed
and that their order of operation can be exchanged and mixed with order symbols o ) and
O( ) within each of the possible angular sectors surrounding the crack tip, and final
solutions are derived by assembling a spectrum of sectors without violating any underlying
mathematical and physical principles. (The small-strain assumption will be violated if strain
singularity exists in a solution, which, however, is usually not held against such a solution,
in that the singularity represents a spatial characteristic of the physical problem when the
crack-tip is approached.) When the elastic—plastic material obeys the maximum plastic
work principle, the analysis by Leighton et al. (1987) for mode I crack growth in homo-
geneous materials also holds here, which indicates that the stresses for the interface crack
problem must be fully continuous in each of the two component materials, and that the
hydrostatic stress o, hence the stresses, must be bounded, and, as far as a first-order analysis
is concerned, can be considered as functions of 6 only. In the present study, we are interested
in solutions with full velocity-field continuity.

Based on the assumptions listed so far and the consequent field properties discussed
above, it can be proved that the velocity field must have the following asymptotic structure
at the crack tip, in both elastic and plastic sectors:

vy(r,0) = A, In (R/r)+ F,(r)+ B,(0)+0(1) asr—0, (6)

where A, are unknown constants; B,(f) are functions of @ only; R is a length scaling
parameter ; F,(r) = o(In (R/r)) but still singular as r — 0; and o( ) is the infinitesimal order
symbol. In the case of mode I crack growth in homogeneous materials, logarithmic velocity
singularity must be ruled out (Leighton et al., 1987) if the maximum plastic work principle
is invoked, which motivated us also to seek solutions with 4, = 0 here, which in fact must
hold if the interface is between a ductile material and a rigid substrate. We also note here
that the second term in (6) will not enter the equations of the present first-order analysis, and
can be omitted for practical purposes (in fact it should disappear if one of the materials
is rigid). Therefore, the components of the velocity field, as those of the stress field, will be
regarded as functions of ¢ only, which enables us to construct solutions directly from those
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in the literature, e.g. that by Leighton ez al. (1987). To present the elastic—plastic solutions
in simple formats, we introduce for plastic sectors a conventional intermediate function
Y (6), and express the stress components as

011(0) = a(8) —k cos (20— (0)),
022(0) = 6(6) +k cos 20—y (9)),
012(0) = —ksin 20—y (9)). ™

It can be verified that when put in the form of eqns (7), stresses automatically satisfy the
yield condition (5). Following Leighton et al. (1987), among others, it can be shown that
there are two possible plastic sectors: one is uniform and the other, nonuniform. In a
uniform plastic sector, stresses and velocities are all constant, which can be written as

l»l’(9)= 20+!//05 /1 = 03 O-(0) = O-o, vl(o) = Vios v2(0) = Vo,
o1(0) =0o—kcosy,, 0,,(0)=0d,+kcosy,, o,,(0) =ksiny,, )]

where quantities with subscript “o” are constants. In a nonuniform plastic sector, on the
other hand, the solutions are functions of 6, and they are given by

cosyY = (+)msinf, siny = —(i)m,
A= (2mur[2./1—m? sin® 6—m cos 6],
a(0) = 6,—(+)k[msin 0 -2E(6;m)],
vi(0) = vio— () (kv/m*w)[2m sin 0+ (1 —m*)F(0;m) — E(0; m)],

V2(0) = vyo — (+ ) kv/m?pu)[ — 2m cos 8+ /1 —m? sin? ], 9)

where the quantities with subscript “0” are generic constants and are in general different
from those in eqn (8), and ““ +” denotes two possibilities for the value of  and so on, both
of which lead to positive values for the flow factor . (We note here, as well as in later
sections, that the use of eqn (7) is implied whenever only ¥(8) and o(8) are given.) The
functions F(8;m) and E(8;m) are the Legendre elliptic integrals of, respectively, the first
and second kind, defined by

FO;m) = J dé//1—m?sin? 0, E@;m) = J«/ —m?sin? 0 d6, (10)

where parameter m, often referred to as the Mach number, is related to the material’s shear
modulus g and mass density p through m = v/c, = v/(u/p) "', ¢, being the material’s shear
wave speed. Finally, in an elastic sector, stresses and velocities are again all constant, and,
due to full stress continuity (hence the satisfaction of the yield condition), the sector will
be equivalent to a uniform plastic one if it is adjacent to a plastic sector in the same
component material.

In what follows, a number of one-parameter families of solutions of the asymptotic
interfacial crack-tip fields will be presented for ductile/rigid interfaces and several isolated
solutions for ductile/ductile interfaces. This is accomplished by assembling a number of
elastic-plastic sectors around the crack tip, so as to satisfy the traction-free boundary
conditions on the crack surfaces and the traction and velocity continuity conditions along
the material interface, as well as such continuity conditions across all inter-sector radial-
boundaries. Once an assembly of sectors is obtained, the strain distributions in each of the
sectors can be derived by integrating the strain-rates, which can be obtained from velocity
components through eqn (2), along lines parallel to the x,-axis, for which x, = constant.
This is because the strains at a material point are accumulated when the particle is traversing
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the crack-tip sectors along the negative x,-direction. After carrying out such integrations,
the strains in a nonuniform sector are found to be:

€11 = —€22 = 8110+ () (k/m’p)[2m sin 6+ (1 —m*)F(0;m) — E(0; m)],
€12 = €120— (1) (k/m*w)[2m cos 0—. /1 —m? sin? @+m In | tan (6/2)]
—(m?*2) In|(1 —/1—m?sin? §)/msin 0]], (11)

where ¢, ,, and ¢,,, are, in general, functions of x, only. It is also easy to see that strains in
a uniform sector are also functions of x, only. These functions of x, can be considered as
constants in a first-order analysis, such as the present one, if singularity in x, is ruled out.
To this end, it is noted that in a sector bordering the x,-axis, singularity as x, — 0 without
regard to the value of x,, is unreasonable and must be discarded. As such, and upon
observing how strains are accumulated, we conclude that ,,,, £;,, and strains in uniform
sectors can all be regarded as unknown constants. It is hence concluded that strain fields
given by the asymptotic solutions here will not be singular at the crack tip.

DUCTILE/RIGID INTERFACE: TYPE I ASSEMBLY

As shown in Fig. 2, the crack-tip region in the upper ductile material is composed of
two uniform plastic sectors, with sector (i) bordering the crack surface and sector (iii) the
material interface, and one nonuniform plastic sector, sector (ii), in between. Admissible
stress distributions in these sectors belong to four families of solutions, which are given
below.

First family
This family of solutions is characterized by a tensile normal stress in the x,-direction
along the crack flank. In sector (i) (n =0 > 0,):

O'Ek, O'HEZk, 0'22=O'12§0. (12)
In sector (ii) (6, =6 = 8,):
cosy = —msin 0, siny =./1—m?sin? 0,
o = k[m(sin 0 —sin 0,) —2E(0;m)+2E(0,;m)+1]. (13)
Finally, in sector (iii) (6, = 0 > 0):
g,.=0—kcosn, o,,=0+kcosn, &,,=ksinn, (14)
where the mean stress ¢ is given by the expression in eqn (13) at 8 = 8,, and n is the
arbitrary parameter for this family of solutions, whose range of values is limited by the
inequality = > 6, > 6, > 0 and by the requirement that cos y < 0 and sin > 0 at 6,. The

angles 6, and 8, are determined from the continuity of the tractions across the inter-sector
radial boundaries. We then obtain

(ii)
nonuniform
4,
(1) iii
uniform (i)

Y:  uniform

rigid substrate

Fig. 2. The type I assembly of plastic sectors around a ductile/rigid interface crack.
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8, = n—sin~' [(—m++/m>+8)/4] (15)

and we can solve for 8, from
cos (20,+n) = —msin @, <0 and sin (26,+#) > 0. (16)

For m=0.3, it is found that 6, = 140.5°, —180° <# < 90°, and correspondingly,
140.5° > 6, > 0°. It can be shown that the stress component o ,, for this family of solutions
is always tensile in front of the crack tip, whose magnitude increases as # increases. As such,
this family of solutions will be referred to as “tensile” solutions. Stress distributions for the
cases of # = —60° and 60° are shown in Figs 3(a) and 3(b), where and thereafter, unless
stated otherwise, the stress values are dimensionless due to normalization by the yield stress
k.

After the angles are determined from the stress field alone, the velocity and strain fields
can be obtained from continuity conditions in a straightforward manner. However, for the
sake of brevity, expressions for the velocity and strain components will be given for this
particular case only and will be omitted in the sequel. Noting full continuities throughout,
we can arrive at the following formulae. In sector (iii), v, =v,=¢;, =¢&;, =0 and
€12 = €15, Where €4, is an unknown constant, which cannot be determined asymptotically

1st family of type I assembly

n=—60° 9,=140.50%, 0,=83.668% 0.3
4 T T T T
o2 \
3t J
%11
2 5
F1p
0 5
912
—1 L
-2 A 4 = A 4
(a) 0 30 60 80 120 150 180
0
ist family of type I assembly
60t 0,140.50°, 8,=17.61° m™0.3
6 y T T v

aij

(b) 0 20 0 % 120 150 180
o

Fig. 3. Angular stress variations for the first family of solutions of type I assembly around a
ductile/rigid interface crack, when m = 0.3 and (a) n = —60° or (b) n = 60°.
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and must be obtained from a full-field analysis, such as a finite element study. The velocities
and strains in sector (i) are all constant and their values are equal to those from sector (ii)
at @ = 8,, which can be written as

Vv, = Vey, = — Ve, = (kvjum?)[2m(sin 8 —sin 6,)
+(1—m)F(0;m)—(1—m)F(0,;m)—E(8; m)+ E(8,;m)],
vy = (kv/um?)[—2m(cos §—cos 8,) +/1—m? sin® 8—/1—m? sin® 8},
€12 = €20+ (k/um*)[2m(cos 8 —cos 92)—ﬁ:m
+./1—m? sin? 6, +m In | tan (8/2)/tan (8,/2)|
—(m*/2) In|sin 6,(1—./1—m? sin? 8)/sin O(1 — /1 —m? sin? 6,)[}. (17)

Second family

In contrast to the first family, the second family of solutions, also parameterized by n,
features a compressive normal stress in the x;-direction along the crack surface. Thus in
sector (i), the stresses are:

o=—k, o,=-2k opn=0,=0 (18)

And in sector (iii) the stresses will have the same expressions as those in eqn (14), except
that now o is the mean stress at 8 = 8, calculated from the formulae below:

cosy =msin8, siny = —./1—m?sin? @,

o= —k[m(sin 8—sin 8,)—2E(6;,m)+2E(8, ;m)+1], (19

which is the solution for sector (ii). Finally, it is noted that the angle 8, is still given by egn
(15) while 8, is determined from :

cos (28,+n) =msind, >0 and sin (26,4+n) < 0. (20)

The parameter # for this family of solutions is restricted by the requirement that cos yy > 0
and siny <0 at 8,. For m=0.3, we have 6, = 140.5°, —180° <n < —90° and
0° < n < 180°, and correspondingly, 51.82° > 8, > 0° and 140.5° > 4, > 51.82°. This
family of solutions is characterized by a stress state at the crack front of the following type:
04, < Oforalln values,and o, < O0for —180° <y < —90°and ¢,, > 0 for0° < 5 < 180°.
This seems to imply that if crack growth does occur with this type of stress field, it must be
of a shearing type. In light of this, we will label this family of solutions “shear” solutions.
The stress distributions for # = —120° and 60° are given in Figs 4(a) and 4(b).

Third family

Similar to the first family, the crack flank for this family is in a state of uniaxial tension
in the x-direction. It is noted that stresses in sectors (i) and (iii) will still be described by,
respectively, eqns (12) and (14), while those in sector (ii) will be given by a set of formulae
slightly different from eqn (19), namely,

cosy =msinf, siny = —./1—m?sin? 4,
o = —k[m(sin 0—sin 6,) - 2E(0;m)+2E(0,;m)—1]. @n

In this case, the mean stress ¢ in eqn (14) must be obtained from (21) through continuity
at 8., which is determined through eqn (20). The angle 8, is given by
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2nd family of type I sssembly
n=—120* 0,=140.50°, 8,=17.60° n=0.3

%2

>-2
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_5 L
(a) -5 L s . . N
0 30 60 90 120 150 180
)
2nd family of type I assembly
2 n=60* 0,=140.50°, 8,=113.01° 0.3
1 12
o L
=
o
_1 3
92
_2 3
944
(b) -3 " . M M .
0 30 60 920 120 150 180

Fig. 4. Angular stress variations for the second family of solutions of type I assembly around a
ductile/rigid interface crack, when m = 0.3 and (a) n = —120° or (b) 5 = 60°.

6, =sin" ' [(m+./m?+8)/4]. (22)

Form =10.3,0, = 51.82°, —180° < < —90° and correspondingly 51.82° > 8, > 0°. This
family of solutions resembles the previous one, in that at the crack front¢,, < 0Oandg,, < 0
for all # values. Therefore, this family of solutions will also be referred to as “‘shear”
solutions. Figure 5 depicts stress variations for the case of n = —120°.

Fourth family
Stresses in sectors (i) and (iii) are computed from eqns (18) and (14) respectively, and
those in sector (i) from the following:

cosy = —msinf, siny =./1—m?sin* 0,

o = k[m(sin O—sin 6,) —2E(6; m)+2E(0, ; m)—1]. 23)

The angles 8, and 0, are determined, respectively, from eqns (22) and (16). For m = 0.3,
8, = 51.82°, 0° < # < 90° and correspondingly 51.82° > 6, > 0°. This family of solutions
has the same feature as the first family, namely that the stress component o, at the crack
front is always tensile, and hence will also be called “tensile” solutions. The stress variations
for the case of n = 60° are illustrated in Fig. 6.
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3rd family of type I assembly

n=—120° 0,#51.82°%, 0,=17.60° 0.3
2 .
ir %44 1
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(-]

Fig. 5. Angular stress variations for the third family of solutions of type I assembly around a
ductile/rigid interface crack, when m = 0.3 and n = —120°.

4th family of type I assembly

1=60° 8,<51.82°, 9,=17.651" 0.3
2 —r T — T T
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0 30 60 90 120 150 180
0

Fig. 6. Angular stress variations for the fourth family of solufions of type I assembly around a
ductile/rigid interface crack, when m = 0.3 and » = 60°.

DUCTILE/RIGID INTERFACE: TYPE II ASSEMBLY

The second type of assembly of sectors for the ductile/rigid interface is obtained from
the first one by adding a nonuniform plastic sector (iv) between the material interface and
the uniform sector (iii), as shown in Fig. 7. Two one-parameter families of solutions exist.

(iii)

uniform

J.

(ii)

nonuniform

(iv)
¥, nonuniform

(1)

uniform

rigid substrate

Fig. 7. The type Il assembly of plastic sectors around a ductile/rigid interface crack.
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First family

The stress distributions in sectors (i)—(iii) and the angles separating the three sectors,
namely 8, and 6,, follow the same set of formulae as those for the first family of type 1
assembly. Stresses in sector (iv) (8; > 6 = 0) are obtainable from

cosy =msinf, siny = —./1—m?sin?0,
= —k[m(sin 6 —sin 8; —sin 0, +sin 6,) —2E(6;m)
+2E(05;m)+2E(0,;m)—2E(6,;m)—1], (24)

and the angle 6, must be determined from the following conditions :
cos (260;+n) =msin8, >0 and sin 26,+1n) <0, (25)

where the parameter n is confined to certain intervals. For m = 0.3, 6, = 140.5°,
—180° < 1 < —90° and correspondingly, 140.5° > 6, > 98.63° and 51.82° > 6, > 0°. This
family of solutions is composed of “shear” and ““tensile” solutions. For example, for the
case m = 0.3, it belongs to the group of “shear” solutions (with 6,, < 0 at 8 = 0°) when
—180° < n < —164° and to the group of “tensile” solutions when —163° < # < —90°. See
Fig. 8 for stress variations when n = —120°,

Second family
Stresses in sectors (i)—(iii) and angles 8, and 0, are described by the same set of formulae

as those for the second family of type I assembly. Stresses in sector (iv) (6 = 6 > 0) come
from

cosy = —msin 6, siny =./1—m?sin? 6§,
g = k[m(sin 0 —sin 8, —sin 6, +sin 0,) —2E(0; m)
+2E(64;m)+2E(B,;m)—2E6,;m)—1] (26)

and the angle 8, is determined from the following conditions :
¢o0s (20;+n) = —msinB; <0 and sin (20;+1n) >0, 27

where n can only vary within a certain range. For m = 0.3, 8, = 140.5°, 0° < n < 90° and

1st family of type II assembly

=—120° 0,m140.50%, 9,113.02°, 84»17.60% 0.3
3.0 v v r— T
2.5
[ o434
20}
1.5
o2
1.0}
pas
® st
0}
-5t ou
-1.00—
-1.5 . . s - -
[} 30 60 90 120 150 180
[

Fig. 8. Angular stress variations for the first family of solutions of type II assembly around a
ductile/rigid interface crack, when m = 0.3 and n = —120°.
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2nd family of type II assembly

n=60* 0,=140.50°, 0,=113.02°, 9,~17.60° 0.3
1.5 T r v T v

1.0 f—_

92

-3.0 N —_ " " —_—

0 30 60 90 120 150 180
[}

Fig. 9. Angular stress variations for the second family of solutions of type II assembly around a
ductile/rigid interface crack, when m = 0.3 and n = 60°.

correspondingly, 140.5° > 6, > 98.63° and 51.82° > 8; > 0°. This family contains mainly
“shear” solutions with ¢,, > 0 in front of the crack tip. In particular, for m = 0.3 the
solutions are of the “shear” type when 17° < n < 90°. Stress variations for n = 60° are
shown in Fig. 9.

DUCTILE/DUCTILE INTERFACE: ISOLATED SOLUTIONS

Interfaces in many composite materials are between a ductile material and a brittle
material and are often modelled as ductile/rigid interfaces, as done in most previous studies
as well as in the earlier sections of this paper. The results of the finite element study by Shih
and Asaro (1989) indicate that for a ductile/ductile interface, the asymptotic behavior of
the stress field at the crack tip is governed by the softer (more ductile) material, implying
that asymptotic solutions for a ductile/rigid interface can capture the essential features of
the crack-tip fields in the more ductile material for a ductile/ductile interface. On the other
hand, while analytical solutions for ductile/ductile interfaces are expected to provide more
accurate descriptions of the interfacial crack-tip fields and hence more desirable, they are
mathematically much more involved and hence more difficult to obtain. Nonetheless,
since asymptotic analyses usually involve many simplifying assumptions, the existence
of asymptotic solutions under these assumptions for ductile/ductile interfaces will have
theoretical significance. In the following we demonstrate the existence of two types of such
solutions for a pair of dissimilar ductile materials. These two types of solutions are referred
to as “isolated solutions™ here since they do not represent families of solutions with free
parameters. They share the same assembly of plastic sectors around the crack tip, which as
shown in Fig. 10 is composed of two uniform sectors and one nonuniform sector in each

(ii.)

nonuniform

Ut
@i.)

uniform

(iii4)
Y« uniform

Pz (i)
uniform

(i.)

: .,
uniform

(ii-)

nonuniform

Fig. 10. An assembly of plastic sectors around a ductile/ductile interface crack.
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of the ductile materials. As a convention, subscripts ““+ " and *“— " will be used to signify
quantities (such as the yield stress k, the Mach number m, the angles separating the different
sectors, and the parameter #) associated with, respectively, the upper and lower materials.
Stress variations for both solutions are given below.

First solution

For the upper material, the solution is represented by that for the first family of
solutions of the type I crack-tip assembly for a ductile/rigid interface, with relevant quan-
tities indicated by a subscript “+ . For the lower material, the solution is given by, for
sector (i_):

o=k_, 01=2k_, 0;=0,,=0; (28)

for sector (ii_):

cosy =m_sinf, siny = —./1—m?> sin? 9,

o=—k_[m_(5in@—sinf_,)-2E@;m_)+2E@B_,;m_)—1]; (29)
and for sector (iii_):
o,=0_—k_cosy_, oy =0c_+k_cosn_, o,,=k_sing_, (30)

where 6_ = 6(0._,) from eqn (29). The angle 6_, is computed from

0_, = —n+sin ' [(—m_+./m> +8)/4] 31)
and the angle 8_, should be obtained from
cos (20_,+n_)=m_sin@_, <0 and sin(20_,+4+%n_) <O. (32)

It must be pointed out that the parameters n, and n_ are not arbitrary and must be
determined by satisfying the traction continuity conditions across the bimaterial interface
at 6 = 0°, namely,

o,.+k,cosn, =o_+k_cosn_,

k,sinp, =k_sing_, (33)

where ¢, and o_ are the mean stresses in sectors (iii,) and (iii_) respectively and are
dependent indirectly on 7, and #_ respectively. It is noted that for a certain crack propa-
gation speed v, the Mach numbers m, and m_ for the upper and lower materials will be
different due to different shear wave speeds in the two materials. To obtain a solution from
eqn (33), the crack speed and the ratios between m, and m_, and between &k, and k_ must
be supplied as input. For example, for the case of m, =0.4, m_ =03, k. = 1.0 and
k_ = 1.2, it is found that n, = 33.96° and n_ = 27.75°, and the resulting stress variations



Dynamic crack growth along elastic—plastic interfaces 2949

Isolated solution for ductile/ductile interface: egi13.dat
nt=33.96°, n-=27.75" mt=0.4, p=0.3, ki=l,, k-=1.2

Y T v —r— -

-2 A s . . "
-180 -120 60 0 60 120 180

Fig. 11. The first type of isolated solutions for a ductile/ductile interface crack for the case of
m, =04,m_ =03k, =10,k_=12

are shown in Fig. 11, where a jump in o, across the material interface at = 0° is observed.
It can be seen that this is a “tensile’” solution.

Second solution

For the upper material, the solution is represented by that for the second family of
solutions of the type I crack-tip assembly for a ductile/rigid interface, with relevant quan-
tities indicated by a subscript “+”. For the lower material, the solution is given by, for
sector (i_):

c=—k_, 0'1.1=—2k_, Gy =01, =0; (34)

and for sector (ii_):

cosy = —m_sinf, siny =./1—m? sin’ 6,

g=k_[m_(sinf—sinf_,)—2E@;m_)+2E@_,;m_)—1]. (35)

Stresses for sector (iii_) are still described by eqn (30), except that 6_ = (0 _,) should be
calculated from eqn (35). The angle 0_, is the same as that given by eqn (31), but _,
should come from

cos (20_,+n_)= —m_sinf_, >0 and sin(20_,+y_) > 0. (36)

Again, the parameters #, and n_ are not arbitrary and must be determined from the
traction continuity conditions in eqn (33). For the case of m, =04, m_ =03, k, = 1.0
and k_ = 1.2,itis found that n, = —146.03° and n_ = —152.25°. The stress distributions
are shown in Fig. 12. This is a “shear” solution with ¢,, < 0 at 6 = 0°.

CLOSING COMMENTS

A first-order elastic—plastic asymptotic analysis has been carried out for the problem
of plane strain, steady-state dynamic crack growth along ductile/rigid and ductile/ductile
interfaces. The ductile materials are elastic—perfectly plastic and incompressible, and obey
the J,-flow theory of plasticity. Six one-parameter families of solutions are found for
ductile/rigid interfaces and two types of isolated solutions for ductile/ductile interfaces. The
velocity and strain fields for these solutions are not singular at the crack tip, and full velocity

SAS 30:21-F
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Isolated solution for ductile/ductile interface: egi24.dat
n=-146.03%, n-=152,25°¢ ). 4, p=0.3, kiel, K k-=1.2
2 r T v v v

it 4

-6 — R . . N
-180 -120 -60 0 60 120 180

Fig. 12. The second type of isolated solutions for a ductile/ductile interface crack for the case of
m,=04,m_=03,k, =10,k_=12.

and stress continuities are achieved in each of the two component materials. The following
observations can be made about the above study:

(a) The solutions reported here represent a class of possible mathematical structures
of the near-tip fields for dynamically growing interfacial cracks. Whether they can be
achieved in reality or not must be examined against full-field solutions for properly posed
boundary/initial value problems obtained with, for example, the finite element methods.
Such fuli-field numerical solutions are not yet available.

(b) While two types of isolated solutions are demonstrated in this study for ductile/
ductile interfaces, families of solutions with free parameters are not attempted (although it
is suspected that several assemblies of crack-tip plastic sectors are possible based on our
understanding of the asymptotic structures in each of the plastic sectors). This is because,
as mentioned earlier, the study by Shih and Asaro (1989) indicates that for a ductile/ductile
interface, the asymptotic behavior of the stress field at the crack tip is governed by the softer
(more ductile) material, implying that asymptotic solutions for a ductile/rigid interface can
capture the essential features of the crack-tip fields in the more ductile material for a
ductile/ductile interface. As such, it makes more sense that such possibilities be explored if
full-field numerical studies are available and if they suggest the existence of such families
of solutions.

(c) The various types of solutions given in this paper have been roughly labelled as
“tensile” or “shear” solutions. Some of the “tensile” solutions do not have significant
tensile o,, values in front of the crack tip and if crack growth can occur in this case the
driving force must be from the shear stress component o ,,. In this connection, it is noted
that the “‘shear” solutions sometimes have positive ¢,, values and sometimes negative
values at # = 0°, which may not all be possible for traction-free interface cracks, because
if they correspond to, respectively, remote positive and negative shear loading, then under
certain conditions one of them will cause crack surface contact over a length scale larger
than the plastic zone size. For example, for the geometry of the ductile/rigid interface cracks
considered, a negative remote shear loading will cause non-negligible crack surface contact
for a crack along the interface of a compressible linearly elastic solid and a rigid substrate,
and asymptotic solutions assuming, say, frictionless crack surface contact must be obtained
along the line of this study.
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